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We study numerically the capillary rise between two horizontal plates and in a rectangular tube, using a
lattice Boltzmann �LB� method. We derive an equation for the static fluid-solid contact angle as a function of
the wetting tendency of the walls and test its validity. We show that the generalized Laplace law with two
independent radii of curvature is followed in capillary rise in rectangular tubes. Our method removes the
history dependence of the fluid-solid contact angle that had been present in earlier LB schemes.
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I. INTRODUCTION

Wetting and capillary phenomena are abundant in nature
and technological applications. Flow of oil and water
through subsurface reservoirs and the rise of nutrient-rich
fluids in the stem of a plant are two examples of systems
where capillary forces strongly influence the flow. These
capillary forces are determined by wetting of the solid phase
by the two fluid phases involved. The wetting ability is con-
trolled by the pairwise interfacial energies of the two fluids
and the solid, and it can be characterized by a contact angle.
The contact angle � is the angle formed by the intersection of
the interfaces bounding the three phases.

In experimental fluid mechanics the determination of the
static contact angle requires very clean conditions �1,2�. In
many practical situations one finds that the three phase con-
tact line is pinned and immobile not only for a single � but
whenever � lies in an interval

�r � � � �a. �1�

The angle �r is called the receding contact angle and the
angle �a is called the advancing contact angle �1�. It is men-
tioned in Ref. �1� that �a−�r may be as large as 10° or more
for surfaces that have not been specially prepared. Fermigier
and Jenffer �3� report a much larger 30°–60° contact angle
hysteresis in the case of glycerine-silicon oil systems. Also
Stokes et al. �4� report a 20° contact angle hysteresis in the
case of a glycerol-methanol mixture. It is unclear what
causes this contact angle hysteresis. It seems that the effect is
much more pronounced in the case of a liquid-liquid inter-
face than in a liquid-gas interface. There have been many
proposed explanations for the contact angle hysteresis, but it
is generally believed that properties of the surface cause this
effect. Properties such as surface roughness, chemical con-
taminations or inhomogeneties, and solutes have been shown
to have an effect on the static contact angle.

Two-phase fluid flow in confined geometries is strongly
influenced by capillary effects �see e.g., Refs. �5–11��. The
change in the aperture of the flow channel leads to change in
the curvature of the fluid-fluid interface. This in turn leads to
change in the capillary pressure over the interface as pre-
dicted by the Laplace law,

�P = � cos �� 1

r1
+

1

r2
� . �2�

Here �P gives the pressure drop across the interface, � is the
surface tension, and r1 and r2 are the principle radii of cur-
vature of the interface.

We seek to understand the dynamics of a moving interface
in confined geometries. Specifically, we study the manifesta-
tion of this problem in lattice Boltzmann �LB� methods of
immiscible fluids. Our first goal is to understand what sets
the shape of the LB fluid-fluid interfaces in static or quasi-
static situations. We show how an equation for the contact
angle in the case of partial wetting can be derived from first
principles. The surface curvature is measured in the case of
rectangular tubes and we find the mean curvature to be con-
stant also in the case of two independent finite radii of cur-
vature. We also show that the LB method �12� follows the
generalized form of Laplace law given by Eq. �2�. In a pre-
vious paper we reported an effect called lattice pinning for
the lattice Boltzmann color-gradient method �12�. This effect
leads to contact angle hysteresis as we shall demonstrate in
this paper. We report a 19° contact angle hysteresis and show
that an improved method �12� has no contact angle hyster-
esis.

This paper is organized as follows. In Sec. II the LB
method is introduced with a brief review of a modified
method that removes lattice pinning. In Sec. III we present a
first-principles derivation of the contact angle in LB models.
In Sec. IV we study the capillary rise in a two-dimensional
capillary tube and show how the contact angle depends on
the history of the system if the problem of lattice pinning is
not removed. In Sec. V we use the improved method for the
capillary rise in rectangular capillary tubes and show that our
method provides the right contact angles on the walls and
that the Laplace law is followed across interfaces that have
two independent finite radii of curvature. Section VI contains
the concluding remarks.

II. METHOD

The fundamental idea of the LB method is to construct
simplified kinetic models that incorporate the essential phys-
ics of microscopic or mesoscopic processes. Macroscopic or
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hydrodynamic behavior naturally emerges as a result of these
kinetics. The LB method �13–16� is constructed on a regular
lattice. At each lattice point the populations Ni

��x , t� are
known. The subscript i denotes the lattice direction ci con-
necting two neighboring lattice sites, the superscript � de-
notes the particle type �red or blue�, x is the position in the
lattice, and t is the simulation time step. These give the den-
sity, the velocity, and the pressure and/or stress of the fluid at
a given point.

We use the standard Bhatnagar-Gross-Krook �BGK�-
collision scheme with a single relaxation time. Each simula-
tion time step consists of the following steps:

�1� Propagation. Particle populations hop to neighboring
sites, Ni

��x+ci , t�=Ni
���x , t−1�.

�2� Calculation of pseudoequilibrium populations Ni
�eq�,

Ni
�eq���,u� = �� 1

36 + 1
12ci · u + 1

8cici:uu − 1
24u · u� , �3�

N0
�eq���,u� = �� 1

3 − 1
2u · u� , �4�

�=�i,�Ni
� is the number of particles and u is the fluid veloc-

ity. The pseudoequilibrium populations are chosen in such a
way that in the long-wavelength limit the Navier-Stokes
equations with an ideal gas equation of state are obtained
�16�.

�3� Collision. The populations Ni=Ni
red+Ni

blue relax to-
wards the pseudoequilibrium distributions,

Ni��x,t� = �1 + ��Ni�x,t� − �Ni
�eq��x,t� . �5�

Here � is a relaxation parameter which acts as an inverse
relaxation time. It also sets the value of kinematic viscosity,
i.e., �=− 1

3
��1/��− 1

2
� �16�. These collision and relaxation

rules lead to the following macroscopic mass and momentum
equations �16�

�t� + � · v = 0, �6�

�tv + v · �v = − �p + ��2v , �7�

where �=�i,�Ni
�, p= 1

3�, and v=�u.
�4� External forces. Addition of, e.g., gravity or a pres-

sure gradient.
�5� Surface tension. Interfacial dynamics are incorporated

by a modification �12,17� of the color-gradient based method
of Gunstensen et al. �18�. First surface tension is introduced
by changing the distributions

Ni��x,t� = Ni��x,t� + A�f�x,t��� �ci · f�2

f · f
−

1

2
� , �8�

where A is the parameter that sets the magnitude of the sur-
face tension �16,18� and the color-gradient is defined as

f�x,t� = �
i

ci�
j

�Nj
red�x + ci,t� − Nj

blue�x + ci,t�� . �9�

Then color is redistributed according to �12�

Ni
red� =

Nred

�
Ni� + 	

NredNblue

�2 Ni
�eq���,0�cos 
 , �10�

Ni
blue� =

Ni
blue

�
Ni� − 	

NredNblue

�2 Ni
�eq���,0�cos 
 . �11�

Here Nred=�iNi
red and Nblue=�iNi

blue are the total numbers
of red and blue particles at a given site and Ni

�eq��� ,0� is
the zero-velocity equilibrium distribution, 	 is a param-
eter giving the tendency of the two fluids to separate, and

 is the angle between the color gradient f and the direc-
tion ci.

We use a simple bounce-back rule �16,19� on the walls.
This rule leads to a no-slip boundary condition approxi-
mately halfway between the wall node and the nearest fluid
node �16,19�. The wetting tendency of the walls is controlled
by a single parameter pred�0 that measures the fraction of
red color on the solid nodes compared to the density of the
surrounding fluid phase. Combined with Eqs. �8� and �9� this
will give rise to a color gradient, and hence surface tension at
the walls. When the simulation is initialized we place red
color on the walls for the purpose of calculating the color
gradient. The amount of red color on the walls is

Nredwall = �pred, �12�

where � is the density of the fluid phase. The red fluid is the
wetting fluid and we have complete wetting for pred�1.0,
partial wetting for 0� pred�1, and neutral wetting for pred
=0.

III. DERIVATION OF THE CONTACT ANGLE

Theoretical estimates of the contact angle in LB color-
gradient methods can be found by a simple force balance or
by a detailed derivation starting from the dynamics of the
model. To our knowledge these calculations have not been
previously presented. We present both derivations here.

A. Force balance

The force balance at the three-phase contact line states,

F cos � + Fwr = Fwb. �13�

Here F is the force imposed by the fluid-fluid surface ten-
sion, � is the contact angle, Fwr is the force imposed by the
wall-red fluid �wetting fluid� surface tension and Fwb is the
force imposed by the wall-blue fluid �nonwetting fluid� sur-
face tension. This is shown schematically in Fig. 1. First,
note that each of these forces is proportional to the associated
surface tension with the same proportionality factor. Second,

FIG. 1. Force balance at the three-component contact line.
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note that the surface tension is proportional to the amount by
which the distributions are perturbed in the recoloring step.
This is given by Eq. �8� and is proportional to the color
gradient. In fact as we will see in the case of the detailed
derivation the total magnitude of the surface tension is pro-
portional to the sum of the magnitudes of the color gradient
in a line perpendicular to the interface. In the case of sharp
interfaces this can be evaluated at the interface. For the red
fluid–blue fluid interface it is given by Eq. �9� as �f�=Nred

+Nblue=�+�=2�, where � is the density of both the red and
the blue fluid. For the red fluid and/or wall interface it is
�f�wr= �Nred−Nredwall�=��1− pred�, and for the blue fluid and/or
wall interface it is �f�wb=Nblue+Nredwall=��1+ pred�. If these
are combined with Eq. �13� we obtain

2� cos � + ��1 − pred� = ��1 + pred� , �14�

i.e.,

cos � = pred. �15�

Since the fluids are identical in all other respects than
their interaction with the wall, making one fluid wetting au-
tomatically makes the other one nonwetting. Also, since the
color-gradient in Eq. �9� only depends on the difference
Nred−Nblue, coloring the walls negative red has the same ef-
fect as coloring them blue. Hence Eq. �15� works for all
−1� pred�1.

B. Microdynamical basis

We now provide a derivation based on the lattice dynam-
ics �12,16,18,20�. We begin with the mechanical definition of
surface tension �21�

� = 	
−



�PN − PT�dz , �16�

where PN and PT are normal and tangential components of
the pressure tensor. These are given by �16,22�

PN = �
i=1

18

NiciNciN, �17�

PT = �
i=1

18

NiciTciT, �18�

where ciN and ciT are components of the lattice directions ci
normal and tangential to the interface. The surface tension is
given by �12,16,18,20�

� = −
8A

�
�

x
�f� . �19�

Here the sum �x runs across the interface on a line perpen-
dicular to it.

What then is �x�f�? Without loss of generality one may
consider an interface oriented in the x ,y plane. Consider a
sharp interface for which all sites above some z are totally
blue and all sites below are totally red. Now we can calculate
�x�f�. Only the two sites on the interface contribute to the

sum. For the bottom site the color gradient is pointing down
and its magnitude is

4 � � + 2 � � + 4 � � + 2 � � = 12� �20�

�the diagonal directions pointing down, the −z direction, the
diagonal directions pointing up, the z direction�. The same is
true for the top site, which makes

�
x

�f� = 24� . �21�

This value of surface tension is also true for any interface of
any width that starts from Nred=� and Nblue=0 and ends at
Nred=0 and Nblue=�, and has a constant direction of the color
gradient. The reason for this is that the sum of gradients such
as �x�f� depends only on the amount of red and blue particles
at the ends of the summation, whereas all the intermediate
steps cancel out. This is demonstrated by an alternative deri-
vation for the surface tension given in Ref. �16�. Substituting
Eq. �21� to Eq. �19� we obtain �16,18,20�

� = − 192A�/� . �22�

We next do the same calculation for the wall. Consider a
sharp interface. In the case of red fluid and/or wall we get

�f� = 4� + 2� − 4pred� − 2pred� = 6�1 − pred�� �23�

for the fluid site immediately below the wall. Because of the
bounce back rule these distributions are exactly mirrored by
the wall sites giving

�
x

�f� = 12�1 − pred�� . �24�

In the case of blue fluid and/or wall we get

�f� = 4� + 2� + 4pred� + 2pred� = 6�1 + pred�� �25�

for the fluid site immediately below the wall and by reflec-
tion

�
x

�f� = 12�1 + pred�� . �26�

Combining this with Eq. �13� we find

24� cos � − 12�1 − pred�� = 12�1 + pred�� , �27�

i.e.,

cos � = pred. �28�

If the fluid-fluid interface is not sharp the results in �24� and
�28� are not accurate. Instead, because the bounce-back rule
mirrors the distributions at the fluid sites right next to the
walls, the fluid and/or wall surface tension depends on the
amount of blue and red fluid at these sites. Since these de-
pend �because of lattice pinning �12�� on how the lattice is
initialized this can create static contact angle hysteresis. This
could in principle be removed by changing the wall distribu-
tions, but unfortunately then we could no longer be certain of
the no-slip boundary condition. This incompatibility of the
no-slip boundary condition with the fluid and/or wall surface
tension �23� and finite interfacial width can therefore lead to
contact angle hysteresis in LB color gradient methods.
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IV. MEASURING THE CONTACT ANGLE

In this section we study the capillary rise in a simple
two-dimensional situation of a straight tube. One of the flu-
ids �red� is wetting and fills the bottom part of the tube. We
apply a constant body force �−mgẑ� to that fluid and no body
force to the other �blue� fluid, and measure the equilibrium
surface height as a function of g and the width of the tube.

Since the wetting fluid is subject to a gravity-type body
force the hydrostatic pressure drop �phydro=�gh must be
equal to the capillary pressure drop accross the interface
�pcap=2� cos � /x, where x is the width of the tube and � is
the surface tension. These combine to give the equilibrium
height h �24�, where

h =
2� cos �

�xg
. �29�

In Fig. 2 we plot the capillary rise heights for different
body forces, i.e., changing g. We use g ranging from 6.0
�10−5 to 6.0�10−4, relaxation parameter �=−1.0, density
�=10.0, pred=0.5, A=1.0�10−4 giving surface tension �
=0.192, and width x=10. Equation �28� gives the theoretical
value of the contact angle as �=cos−1�pred�=60°. We call the
invasion of the wetting fluid to a capillary filled with a non-
wetting imbibition and the invasion of the nonwetting fluid
to a capillary filled with wetting fluid drainage. The contact
angle above which imbibition is possible is called the ad-
vancing contact angle �a and the contact angle below which
drainage is possible is called the receding contact angle �r.
The equilibrium height of the interface is the same for both
drainage and imbibition when the improved color gradient
method �12� was used. This implies that �a=�r for the im-
proved color gradient method and there is no contact angle
hysteresis. This height as a function of 1/g is plotted as
circles. The straight line gives the theoretical prediction with
�=60°. Similar accord with theory also occurs with wetting
tendencies pred ranging from 0.1 to 1.0.

In Fig. 3 we further demonstrate the validity of Eq. �28�.
We measure the static contact angle as a function of wetting
tendency pred by fitting a circle to the fluid-fluid interface.
The radius of this circle is directly related to the contact
angle �16,24�, so that

R =
x

2 cos �
, �30�

where R is the radius. These fits are shown in Fig. 3�a� for
four different wetting tendencies pred=0.25, 0.5, 0.75, and
1.0. In Fig. 3�b� we compare the measured static contact
angles to the prediction given by �28�. Figure 3�c� shows the

FIG. 2. Capillary rise heights. The circles denote the capillary
rise height for both drainage and imbibition in the case where we
use the improved color gradient method �12�. In this case the data
matches the prediction of �29� with a contact angle 60°. The asterisk
denotes the equilibrium height in the case of drainage, where we
used the color gradient method of Gunstensen et al. �18�. These
would fit Eq. �29� with a contact angle of 49°. The plus signs denote
equilibrium height in the case of imbibition, again using Gunstens-
en’s method �18�. These would fit with a contact angle of 68°.

FIG. 3. Evaluation of static contact angle. In �a� we show the
fluid-fluid interface for pred=0.25, 0.5, 0.75, and 1.0. The curves
shown are circular fits. In �b� we show the contact angles given by
these fits ��� as a function of wetting tendency pred. For comparison
the prediction given by Eq. �28� is shown by the straight line. In �c�
we confirm these results by measuring the capillary rise height and
comparing them to the predictions �straight lines� given by Eq. �29�.
For �a� and �c� plus signs and dashed-dotted line denote pred=0.25;
crosses and dotted line denote pred=0.5; squares and dashed line
denote pred=0.75; and circles and solid line denote pred=1.0.
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height of the capillary rise as predicted by Eq. �29� for these
wetting tendencies.

The good fits in Figs. 2 and 3 between theory and simu-
lations is a consequence of the improved recoloring algo-
rithm introduced in Ref. �12�. Had those improvements not
been made we would have lattice-pinning induced contact
angle hysteresis. In the case of imbibition the contact angle
on the walls is as high as �a=68°. In the case of drainage the
contact angle is �r=49°. In fact one can have any static con-
tact angle between 49° and 68° depending on the initial con-
ditions. In experimental situations �see, e.g., Refs. �1,2�� the
receding and advancing contact lines do not have the same
contact angle. In some situations it may be beneficial to use
a model that has appreciable contact angle hysteresis. In
those situations the recoloring scheme suggested by Gun-
stensen �18� may be more useful than the improved recolor-
ing scheme.

V. RECTANGULAR CAPILLARY TUBES

We now test the applicability of our method for fluid flow
simulations in complex geometries. In order to do this we
check that the pressure drop over the interface matches the
prediction of the Laplace law. In the case of the spherical
bubble the well known and widely tested �16� relation be-
tween the pressure drop and the radius of curvature is �p
= pinside− poutside=2� /r, where r is the radius of the bubble.
We first applied this bubble test to our method and found
excellent agreement.

In general, however, the Laplace law depends on two radii
of curvature, r1 and r2, such that

�pinterface = ��1/r1 + 1/r2� . �31�

Below we verify this general relation when the surface has
two finite independent radii of curvature. To do this we used
rectangular capillary tubes.

The exact solution of the interface shape in a rectangular
tube is far from a trivial problem �25–28�. Nevertheless it
provides an excellent test case for two independent finite
radii of curvature. There are different methods of testing
whether the pressure drop over the interface is accurate. The
easiest is a simple force balance equation,

�pxy = �2x + 2y�� cos � , �32�

where x is the size of the rectangular capillary tube in the x
direction, y is the size of the rectangular capillary tube in the
y direction, and

�p = 2� cos �� x + y

xy
� . �33�

Note however that this equation only gives the sum of the
two radii of curvature.

In the case of a rectangular capillary tube we first checked
the validity of the force balance equation. Figure 4 shows
these results. The solid lines are the estimated heights given
by Eqs. �32� and �33� with a static contact angle �=60°. As
one can see the assumption of a static contact angle does not
change and the use of the equilibrium pressure difference

given by Eq. �32� holds well. Because the position of the
interface is difficult to measure close to the walls, this esti-
mate contains a significant amount of uncertainty. Moreover
the contact line on the walls is not rectangular.

We next show how the main radii of the curvature, r1 and
r2, can be calculated from the surface data. In the case of a
rectangular tube the center point of the tube is where the
measurement of the two radii of curvature is the easiest. The
surface normal at that point is directed in the same direction
as the tube, and the two main axes are given by the short and
the long direction. We fit two circular curves in these direc-
tions to find the radii of curvature. The results here are
shown for a tube with a cross section of 10�20 lattice sites
in Figs. 5 and 6. The radius of curvature is directly related to
the contact angle �16,24�, so that

ri =
wi

2 cos �
, �34�

where w1=x=10.0 and w2=y=20.0. The best fit to the data
gives r1=x / �2 cos ��=9.231 and r2=y / �2 cos ��=18.68.
These would imply a contact angle given by cos �=0.487 or
cos �=0.508. This is consistent with the value one gets from
the force balance equation.

It is evident that the surface exhibits the right curvatures
in given directions and that the pressure drop over the inter-
face matches the Laplace law value. We therefore conclude
that the method can be used to simulate imbibition and drain-
age in complex geometries, and that the mean curvature at
any given point of the interface will give the interfacial pres-
sure drop, and hence the interface dynamics.

We also find that if the numerical noise on the interface is
smoothed out by either fitting an ellipsoidal surface or by
calculating local averages one finds that the mean curvature
on the interface stays constant. Since the mean curvature
gives the pressure drop across the interface we also conclude
that the pressure drop is constant. This corresponds with me-
chanical equilibrium. Thus the Laplace law is followed, in
the case of two independent finite radii of curvature, and for

FIG. 4. Capillary rise heights for rectangular tubes. The circles
denote the measured rise heights for 10�10 rectangular tube. The
solid line is an estimate for the rise height given by Eqs. �32� and
�33� when x=10, y=10, �=60°, and �=0.192. The plus signs de-
note the measured rise heights for a 10�20 rectangular tube and
the dashed line is the corresponding theoretical prediction for the
case when x=10, y=20, �=60°, and �=0.192.
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static interfaces the interfacial mean curvature remains con-
stant.

VI. CONCLUSIONS

We have derived an estimate of the contact angle as a
function of the wetting tendency of the walls when using
color-gradient based LB models. We show that when using
the improved method �12� this estimate gives the appropriate

static contact angle for both imbibition and drainage. We
have applied the method to the case of rectangular capillary
tubes and showed that the contact angle remains constant and
that the Laplace law is followed when the interface has two
independent nonzero radii of curvature.

This work is a necessary precursor to understanding dy-
namical aspects of interface motion. Further work will con-
sist of finding how contact angles vary as a function of the
interfacial velocity and how the transition from quasistatic to
dynamic flow takes place in capillaries with changing aper-
tures.
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